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A new method for calculating configuration averages of n-body operators is presented. The 
method is easily adapted for calculations of high spectral moments, average cross sections of 
atomic processes, etc. We present a general explicit expression for the dependence of the 
configuration average on the occupation numbers. An algorithm based on the angular 
momentum graphical technique is then applied to obtain the dependence of the average on the 
quantum numbers of the orbitals involved. This algorithm is easily adapted to numerical 
applications using a newly developed angular momentum code. A detailed analytic example 
is presented for the case of average of a three-body effective interaction. G 1990 Academic 

Press, Inc. 

I. INTRODUCTION 

The calculation of configuration average of n-body symmetrical tensor operators 
(nBST0) is essential to a variety of atomic physics problems. In particular, these 
averages turn up repeatedly in models for the atomic kinetics and the interpretation 
of emission spectra of highly ionized heavy atoms in hot plasma. For example, the 
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unresolved transition array (UTA) model [ 1 ] characterizes unresolved spectra by 
the moments of transition arrays that reduce to configuration averages nBSTOs. 
Another example occurs in the collisional-radiative model for atomic level popula- 
tions in a plasma, where level-configuration and configurationconfiguration 
average rates can be used (in addition to level-level rates) to reduce configurations 
to effective levels. It has been shown [2] that these average rates involve nBSTOs 
with n < 4. In many cases the second quantization technique [l] provides a 
convenient procedure for averaging operators. But when equivalent electrons are 
involved, it can become cumbersome as n increases. In fact, in the UTA analysis 
only the first and second moments were fully investigated. For higher moments this 
procedure becomes impracticable. In this work we present an alternative method 
for evaluating configuration averages of nBSTOs based on traditional electron 
coordinate indices. We introduce the concept of “minimal configuration” for the 
nBST0 and derive a general relation connecting the original and minimal 
configuration averages. This relation yields an explicit general expression for the 
occupation number dependence of the average in a general N-electron system 
(N > n). The dependence of the average on the configuration orbital quantum num- 
bers is then obtained by calculating the minimal configuration average. For this 
purpose we present a simple algorithm based on the angular momenta graphical 
rules yielding closed diagrams. This algorithm may be easily connected to the 
recently developed NJGRAF code [3], yielding the algebraic expressions and 
numerical values of the various graphs. 

In Section II we define the nBST0 and present our notations. In Section III we 
introduce the concept of an n-electron “minimal configuration” and present the 
fundamental relation that relates configuration averages over the actual 
(N-electron) to that in the minimal (n-electron) configuration. The algorithm using 
graphical technique is described in Section IV to derive the dependence of average 
on the orbital quantum numbers in terms of closed diagrams. The method is 
applied in Section V to calculate the configuration average shifts due to configura- 
tion interaction [4, 51. In Section VI we present the various steps of a computer 
code based on the algorithm of Section IV. 

II. DEFINITIONS AND NOTATIONS 

For an N-electron system, an elementary n-body symmetrical tensor operator 
(nBST0) is defined by 

(N) 
‘= 1 si, iz... in (1) 

(2) 

where CcN) indicates the symmetrical sum Cf= I Cz= I . . . Cj”’ 1 with the restriction 
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i, # i, . ‘. # i,, and Zik) (j, j’) is the unit tensor operator of rank k of the ith 
electron, defined by its (k independent) reduced matrix element, 

(ia llZck)(i j’)ll L) = 'jjobj'j* 

and j z n/j are the orbital quantum numbers. 

(3) 

In Eq. (2) [K] stands for a specific set of n - 1 triangle conditions defining the 
coupling order of intermediate tensorial ranks k,, k,, . . . . k,- i of the n-body 
operator. (Of course, these operators must be coupled to a total rank of zero in 
order that the configuration average of S does not vanish). For example, the two 
couplings 

and 

CKI = C(k,, kz, k,), (k,, b, kz)...(k-l, km O)l 

CKI - II%,, b, k,), (k,, kc,, W, (k,, L 011 

indicate respectively the operators: 

(N) 
S= C [[[Zi:l)(jl, j;)xZi:)(j2, j;)lck’)xZj2)(j3, j;)lckz) 

(N) 
S= C [[Z!fl)(j,, j;)xZi:2)(j2, j;)lck’) 

x [ZjF)(j3, j;) x Zj2)(j4, j&)]‘k2)](0) 

(44 

(4b) 

](O) (54 

(5b) 

The coupling [K] of the operator S is defined explicitly, in terms of the com- 
ponents Z!k) (q = -k, -k + 1, . . . . k) of the operators Z!k), as rq I 

where (k, ql, k2q2, . . . . k,q, 1 [K]) is a recoupling coefficient. 
It is easy to show that any atomic interaction can be expressed in terms of 

nBSTOs combined with one electron reduced matrix elements of the spherical 
harmonics CF) and radial integrals. In Appendix A, in addition to a few simple 
examples, we express the spectral moments of a transition array, used in the UTA 
model, in terms of nBSTOs. A detailed discussion on the use of the operators Z”’ 
is presented in the appendix of Ref. [6]. 

We adopt the standard representation of an N electron configuration C, 

s s 

where N, is the number of electrons occupied in the shell “s” whose orbital quan- 
tum numbers are js = nsls j, and the sum is over different shells s. 
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Finally, we define the configuration average of S by 

where 

g,=n “$ l 

s ( > s 
(9) 

is the statistical weight of C, ( 3hT ‘) is a binomial coefficient, and $ runs over all 
its allowed states. 

III. THE OCCUPATION NUMBER DEPENDENCE OF THE nBSTOs AVERAGE 

Clearly, (S),. vanishes unless N > n. Referring to Eq. (2) we define the “minimal 
configuration” of S as the N = n electron configuration C, constructed by its 
orbitals, i.e., 

C,=j,j,...j,=p:j;j;...j~. (10) 

This definition makes explicit the requirement that the “primed” orbitals can 
differ from the “unprimed” set by at most a specific permutation p that is unique 
to the operator S. Otherwise the configuration average of S will vanish. 

In general, we may have equivalent orbitals in C, ( ji = jj). Renumbering the 
different shells, s, using the standard occupation number representation we may 
write 

C,=ni?, Cns=n (11) 
s s 

and the actual configuration for averaging is 

C=nj? with N, 2 n,. 

Using the identities [7], 

(12) 

C [Zikl)(jl, j;)xZp)(j2, j;)lck’ 
i#j 

=(-1) (kl+k--k) 1 [zj”2)(j2,j;)xZlkl)(jl,j;)](k) 
i#j 

(134 

= t;2fcii. ki, fi) 1 CZ!“‘(L, $1 X ZJ’2)(j2, ji)lck), 
i#j 

(13b) 

where f( ji, ki, ti) is an explicit recoupling coefficient, we may perform the permuta- 
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tion p:j;j; ...jL step by step and rewrite the operator S in terms of “direct type” 
operators D: 

S= 1 (KIT)D (14) 
CT1 

where (Kl T) is a combination of the recoupling coefficients f(j,, k,, ti), and [T] 
defines any chosen set of intermediate coupling scheme of the operators Zjt)(j, j). In 
Eq. (14) Ccr, stands for summation over all possible values of the ranks of [T]. 

The details of (KJ T) are not important here. The only point that counts here is 
that they do not involve electronic coordinates. 

In Appendix B we show that 
CD), = cp(D),,> (16) 

where 

q=n Ns. 
s ( > n, (17) 

Clearly from Eq. (14) we also have the general relation 

<S)c= cpw,. (18) 

This relation is a generalization of the well-known expression for the configuration 
average of the electrostatic interaction [ 111, a special case with n = 2. It reduces the 
calculation of the con$guration average from a general N-electron system into an 
n < N electron , usually much simpler, system. 

The algorithm for calculating the configuration average within the “minimal 
configuration” (N = n system), yielding analytic expressions for the averages in 
terms of the orbitals quantum numbers, is described in the next section. 

IV. CONFIGURATION AVERAGE OF C,: THE DEPENDENCE 
ON ORBITAL ANGULAR MOMENTA 

Since the configuration average forms a matrix trace it is independent of the 
choice of angular momentum coupling scheme of the states $ E c,. For convenience 
we will work in the ‘ym” Slater determinant (SD) scheme in which 

I~>=(l/~!)1’2C(-1)p~: Iml(l)m,(2)...m,(n)), (19) 
P 

where mi, i= 1,2, n represents the different individual orbital sets 

m=jm=nljm, (20) 

and p permutes the mi sets leaving electronic coordinates (1 ), (2), . . . . (n), fixed. 
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From Eqs. (8), (19), and (l), we have 

(21) 

where {mi} is the allowed set m, # m2 # ... # m,, defining each SD state + E C, in 
the sum. 

It can be easily seen that the summation over all $ - (m,} E C, and over p in 
Eq. (21) amounts to summing each m value from -j to j with the fixed j = nlj 
values of Eq. (11). Further, since the orbitals j E nlj of each electron (l), (2), . . . . (n) 
in Eq. (21) is fixed by the definition of S12 _. .,,, the nonvanishing terms in Eq. (21) 
result from permutations of equivalent electrons only, specifically, 

x Is,,....I~‘:m,(l)m,(2)...m,(n)). (22) 

In Eq. (22) the sum is over p’ = pp, where p is the permutation of Eq. (10) and 
p permutes only m symbols (m - jm) of equivalent electrons. The sum over all m 
means that for all i = 1, n, mi runs over all possible values from ji to -ji. 

The restriction m, # m2 # . . . #m, has been removed in Eq. (22) as contribu- 
tions of mi= mj vanish owing to the antisymmetry of the determinantal wave- 
functions. 

From Eq. (22), Eq. (2), and Eq. (6) we now obtain the following working for- 
mula in terms of one-electron matrix elements: 

x fJ (m,(a) lZf$ (L, jh)l z-f:m,(a)) 
1 

. 
CX=l 

(23) 

The evaluation of the contribution to Eq. (23) from each permutation p’s pp 
proceeds now using graphical representation of the matrix element in accordance 
with the intermediate couplings [K] of the various operators Zk) of Eq. (2). 

The graphical rules have been described in details by Lindgren and Morrison 
[S] and we will only sketch the derivation briefly. Using the conventions of 
Lindgren and Morrison [8] (with negative junctions), the matrix element 
(m IZqck)(j, j’)l m’) and the recoupling coefficients (k,q,,k2qZlk12q12) are 
represented by the graphs of Fig. 1. 

The summation over all q is removed by combining lines having the same kq 
symbols so that the k lines form a tree-like diagram which is constructed simply 
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im 

a 
<m I Zq ck) (j,j’)I m’ > E 

k 

kg 

i’ m’ 

b 
(kg19 k2q2 1 k12 q2) = 

k--r k2*2 
kl2 q12 

FIG. 1. Graphical representations of: (a) a single electron matrix element; (b) a two angular 
momenta recoupling coefficient. The heavy line on a k line stands for a multiplication factor of 
(2k + 1 )“2. 

according to the triangle conditions in [K]. The two examples of Eq. (5a) and 
Eq. (5b) yield the graphs of Fig. 2. In these graphs, the line corresponding to the 
resultant zero rank of Eqs. (4a) and (4b) has been removed, canceling the factor 
(2k + l)‘/* from the line to which it was connected. 

Note that since in the ket p’-pp permutes the m symbols of the bra, each m 
symbol appears exactly twice in Fig. 2, one from the bra (with an arrow) and one 
from the ket. Summation over all mi yields closed loops formed by joining the ends 
of lines that share a summed index. Each closed graph is then assigned an algebraic 
expression in terms of n-j symbols according to the graphical rules. The application 
of this procedure is demonstrated analytically in the Section VI. The algorithm we 
propose for computer evaluation of the average of S is based on the above proce- 
dure, using the recently presented NJGRAF code [3] which evaluates the algebraic 
expressions and numerical values of any closed diagram. This will be described in 
detailes in Section VI. 

VI. EXAMPLES 

(a) Configuration Average of a Three-Body Effective Interaction in j” 
Our method is applied in this section to calculate analytically the configuration 

average of a three-body effective interaction in a configuration of the type j”. It can 
be shown that the three-body effective operator has the form: 

SeK= C [[Zi’)(j,, j,)xZ~‘)(j,,jl)]c’“)xZjl”)(j,, j,)](O). (24) 
i#k#l 

The interaction (j” ~ I” J -jN) of Ref. [4] is the special case with j, = jb = j, 3 j. 
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a 
ml 

k 123...n-1 =k, 
I_ 

m n 

p’m , 

FIG. 2. Graphical representation of a N-electron matrix element corresponding to one of the 
permutations p’ of Eq. (23): (a) [K] coupling as in Eq. (5a); (b) [K] coupling as in Eq. (5b). 

In order to calculate (S,,), we start with the minimal configuration (n = 3) 

G=ilL~jb=P:Ljl~L 

i 
Uc*l 

P= 
for i,#j, 

I for ja=jl. 

The statistical weight of Cx is: 

gc3 = C(Y1+ 1 XV, + 1 - ~al)(2~b + 1 - 6~ - S,dl/CSd + bbl + 8d!. 

The average is to be taken over a configuration given by 

C=j~ljfQ.j~...j"~, 

where jNc is any other shell not included in C3. 

(25) 

(26) 

(27) 

(28) 
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mi P’mb 

ma P’ma 
FIG. 3. Graphical representation of the configuration average of the three-body operator corre- 

sponding to Eq. (24). The summation is over the permutation p’ of Table I. 

The dependence of (Self)= on the occupation numbers N, N,N, is obtained 
from Eq. (21) 

<&r>,=fgc, (SdT)C,~ (29) 

where 

f= cplg, 
= CNI(N,-~,~)(N~-JH -S,dlICWI + lK?j,+ 1 -b,,W,+ l-d,, -6,Jl. 

(30) 

The graph representing this configuration average is presented in Fig. 3. The 
3-electron permutations p’ = pp (p permutes equivalent electrons only), over which 
there is a summation, are listed in Table I and the corresponding closed diagrams 

TABLE I 

The Equivalent Electron Permutations That Contribute to 
the Configuration Average of the 3-Body Effective 
Interaction Operator S,, in Fig. 4 and Eq. (31). 

No. P’: m,(l) m,(2) md3) C-1)“’ Vanishes unless 

1 m, m mh -1 
2 ml ma mb +1 s 0, 
3 ma mh ml fl 6 hl 
4 4 ml ma +1 6 
5 ml mh ma -1 Gab 
6 mb m, ml -1 60,6”b 
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Gi (the index i enumerates the permutations p’) are obtained from Fig. 3 by joining 
lines that share a summed index. In the convention of Ref. [8] a phase factor of 
( - 1)” is introduced for each reversal in arrow direction of a j line and a factor of 
( - 1 )jl +j2 +jl for each anticyclic permutation of j, , j,, j, lines that share a common 
junction. These operations are required to match the lines in Fig. 3. The resulting 
closed diagrams Gi and their algebraic expressions are given in Fig. 4. The desired 
algebraic expression for the average effective interaction is: 

(b) Configuration Average Shifts Due to Configuration Interaction 

We present here the calculation of configuration average shifts due to configura- 
tion interaction observed experimentally by Sugar and Kaufman [5] in copper 
plasma. The mixed configurations under consideration: C = 3~3~’ and C’ = 3s23p3d 
are comprised of the following relativistic configurations; 

c= {c1=sP:,,P3,2+c2=sP1,2& + c3 = sp:,21 

C’ = {c; = s2p,,2d3/2 + c; = s2p1/2d5/2 

+ 4 = s2p,,A,2 + 4 = s2p3/24/d. (32) 

In the non-relativistic limit the radial orbitals depend only on nl and not on j and 
the j - j spliting is small. The shift A, c of C due to c’ may then be written in term 
of the relativistic configuration shifts [9] A.,., by 

A cc’ = (l/g,) 1 g,Ac,,c;. (33) 
id 

We will present in detail here only the shift of c1 due to c;. As can be seen from 
Section II of Ref. [lo] this shift can be written as 

A c,,c; = CR’(PP, WI2 (Y>c,IA&,c, (33) 

where R’( (pp, ds)) is a Slater integral, AE,, is the average energy difference 
between C and C’, and 

YE 1 c (zyy p,,Ap) .Zj"(~3,2~1,2)) 
i#j k#I 

x (z!c%,,2P3,2) .Z?(‘&,2P& (34) 

By recoupling the Z operators, Y can be expressed in terms of two types of 
nbSTOs one three-body (for i = I) and the other two body (for i = 1 and j = k), i.e., 

Y= 1 {aTST+bTS;}, 
T=O 

(35) 
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%=%1X 

G, = &, (-1 )‘+“+‘“+’ x 

= C-i )‘r4+‘+‘~~~,,.A(j,,j.,tltjb/tl”2 

= s,, (-1 )t+“+‘w { “jb ‘j, t"j,) 

FIG. 4. Graphical and algebraic representations of the six permutations, enumerated in Table I, that 
contribute to (S,,),, of Eq. (31). In this figure, [j] =2j+ 1, 

Ci,~iJ = WI + 1KL + 1) and IX/ill = CV, + l)@j, + 1). 
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where uT and br are given in terms of 6j symbols as 

uT= (- l)T+l (2T+ 1)1’2 
1 T 1 

l/2 312 l/2 

b,= (-l)=+r (2T+ 1)“2 
1 T 1 

312 l/2 312 

(36) 

and 
ST= c CV(P1,2P1,2) zj” (PS,Z~l,Z) w(~1,2P3,2H(“) 

i#j#k 

%= 1 CV(P1,2P1,2) qTYP3,2P3,2)l(0). 
iZj 

(37) 

The corresponding minimal configurations are A = s~,~ pli2 py2 and B = pl12 p3,2 
and from Eq. (18), the occupation number dependence, cp yields for the two 
nbSTOs a factor of 2. Therefore, 

(38) 

For both (ST) and (Sl,) only a single permutation in Eq. (23) contributes, 
leading to the graphs of Fig. 5 yielding 

csT > = -sT,0(2/3)“2/&?4 

(s; > = b,o(8)1’2/g,. 
(39) 

The Slater integral R’(pp, ds) = 156 x lo3 cm-’ and the average energy shifts 
AE,..= -167x 103cm-’ for copper were obtained from least square fit from the 
experiment. This together with 

g, = 16, gs=8 

a0 = -(l/6)“‘, b. = ( 1/72)1’2 
(40) 

FIG. 5. The graphical and algebraic representations of (S,) and (S;) of Eq. (38). 
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leads to 

A cl,ci = (1/8)[R’(pp, d~)]~/dE,:~ = - 18.3 x lo3 cm- ‘. (41) 

The other shifts on ci are 

A , = Acl,ci = 0 c1.q (selection rules) 

A,,,,.i=(1/9)[R1(pp, d~)]~/d&...= -16.2x 103cmP1. 
(42) 

It turns out that all the other pair-contributions c, c’ of Eq. (32) again contain 
only the single Slater integral R’(pp, L&) and their summation over c’ and average 
over c according to Eq. (33) yields the result, 

A c,c’ = (8/60)[R’(pp, d~)]~/dE,..= - 19,5 x lo3 cm-‘, (43) 

in excellent agreement with the experiment [lo] (19.0 x lo3 cm-‘). 

VI. THE VARIOUS STEPS OF A COMPUTER PR~CRAM 

The various steps of a computer flowchart are described below: 

(a) Read Input 

1. NShell. The number of occupied shells in the configuration for 
averaging C. 

2. (n(i), l(i), j(i), N(i), i = 1, NShell). The orbitals and occupation numbers 
defining C = n, jp. 

3. n. The number of electron indices of the averaged operator S. 
4. (ns(i), k(i),js(i), i= 1, n). The set of orbitals jlj2 . ..j., defining S. 
5. (p(i), i= 1, n). The permutation p:j;j;...jh =jlj2...jn defining S. 
6. (k(i), i = 1, n). The ranks of the operators Z(“) defining S. 
7. (k(i), i = n + 1,2n - 1). The ranks k,, k2, . . . . k,- I of intermediate couplings 

identified by the next read. 
8. ((kcoup(jr,jn), jr = 1, 3)jn= 1, n - 1). The indices defining the n- 1 

triangle conditions of [K]. The three indices il = kcoup( 1, jn), i2 = kcoup(2, jn), 
i, = kcoup(3, jn) define the jnth triangle condition (k(i,), k(i2), k(i,)). 

(b) Define the “Minimal Configuration” 

Calculate: 

1. NSmin. The number of different orbitals in C, = j, j, . . . jn. 
2. (n(i), I(i), j(i), n(i), i = 1, NSmin). The orbitals and occupation numbers in 

the standard representation C, = n,rjp. 
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(c) Calculate the Occupation Numbers Dependence cp of (S), 

(d) Perform Loop on Permutations of Equivalent Electrons 

1. Define p’(i) the electron index into which “i” is moved by the permu- 
tation p’ 

p’(i) = p:/p:l, 2, . . . . n,/p:n,+l,...,n,+n,/p:~.~i~~~/p:n,+n,+ . ..n.-,, . ..n/. 

Each Shell / . . . / is permuted separately. 

2. For each permutation p’ create n triangle conditions P(3, n), involving the 
orbitals, 

(tP(l,n)=(k(i), P(2,n)=j(i), P(3,n)=j(p’(i)),i=l,n). 

3. Call NJGRAF. The input is the triangle conditions kcoup(3, n) P(3, n) 
defining a closed loop. The output is algebraic expressions and numerical values for 
the contribution of p’ to the average. 

SUMMARY AND DISCUSSION 

In this work we have presented a new method for calculating the configuration 
average of a general symmetrical n-body tensor operator. The method presents an 
explicit expression for the dependence of the averages on the occupation numbers 
of the configuration, while the dependence on the orbitals angular momenta is 
obtained by graphical techniques. The contribution to the configuration average of 
a three-body effective interaction was calculated as an example. We have 
demonstrated the applicability of the method as an algorithm for computer calcula- 
tions. Such a program is essential for cases with high n-values, in particular for the 
transition array spectral moments p”’ with r > 2, where the application of traditional 
methods become impractical. Although we have presented the method for j-j 
configurations, it is easily applied in the LS scheme as well. In this case the 
operators Zik)(j, j’) of Eqs. (2) and (3) are replaced by double tensors ZiKsk’( j, j’) 
of ranks K, k with respect to the spin and orbital angular momentum spaces. Shells 
are defined by the quantum numbers I= nsl. Results in LS coupling can be obtained 
by performing the appropriate sum over j-j configurations or more simply by the 
substitutions: 

j”=sl”, [j]=2j+l*[sf]z(41+2), 

Gi = G,(p’, kiji) * Gi(p’, kilj) Gi(p’, ~~~~ = l/2). 

581/91/2-15 
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APPENDIX A: EXAMPLES FOR nBSTOs 

(a) Three well-known simple examples of nBSTOs are: 

(1) One-body. Electric dipole interaction d = rC” ), 

where P,. is the dipole radial integral multiplied by (j IIC(‘)II j’). 

(2) Two-body. The electrostatic interaction [S] 

iFjeir~= C LX C (Zlk’(jl,j;).Zjk)(j2, ji)X”(j,j;, j2j;), (AZ) 
hj;jziil k i+j 

where 

X”(j,j;, j2j;) are the Slater integrals R”(j,j;, j,j;) times (j, IlC”‘)ll j;) 
x(L II WI ji >. 

(3) Three-body. Effective interaction [4] (j”- ‘j . . . j”) 

k Fk,, i+T+, CCZ!k’(jy i) Zjk” (j, j)l”“” Z?‘)(j, i)l’“’ X”(ij’, ii) X”‘(ij’, ii). 643) 
1 * 

(b) The spectral moments of a transition array: 

We now show that the spectral moments of a transition array are configuration 
averages of nBSTOs with higher n. 

The rth moment of a transition array between two configurations A and B, is 
defined by [la] 

P@) = c d:,W,, - Hd, 
lZEA 
bcB 

644) 

where the sum is over all states of the configurations A and B. In Eq. (Al ) d 
and H are the dipole and Hamiltonian operators and dab = (a Id1 b), etc. In the 
following we will take H = Ci< j e/rv. 

We define the “curtailed” operators dAB, HAA, and HBB by the representations of 
Eqs. (Al), (A2), where the orbitals in the summations are restricted to the respec- 
tive configurations. Specifically, in Eq. (Al) for dAB the summation orbitals are 
jeA, j’EB, and in Eq. (A2) for HAA (HE”) all jEA(B). Thus 

p@) = c (dAB)zb (H;: -H,“,“)’ (A5) 
0.6 

with no restriction on the states a, b. 
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Using the complete set of configuration eigenstates of H and the closure theorem 
we obtain the representation for the spectral moments, 

d”=c (a I,@‘I a> =I (b Icl?l b), 
a b 

646) 

where 

(- 1)” dAB(HBB)” dBA(HAA)r--s. (A71 

From Eqs. (A6), (A7), (Al), and (A2) it is seen immediately that p:” can be 
decomposed in terms of n-body symmetrical operators of the type S, where 
the highest n is 2r + 1, and that the spectral moments are configuration (scheme 
independent) averages of such operators ptr). 

APPENDIX B: THE RELATION BETWEEN THE AVERAGES 
WITHIN THE MINIMAL AND ANY GENERAL CONFIGURATIONS 

In this appendix we will derive the relation between the configuration averages 
of the “direct type” operator D within the configuration 

C=n jp, ;Ns=N (Bl) 
s 

and the minimal configuration 

C,=ni?, xn,=n, n,<Ns. 
s s 

Specifically, we will show that 

where 

and 

(NJ 

(N) n 
= C n Zi~Yj,,i,), 

a=1 

032) 

(B3) 

U34) 

U35) 



476 OREG ET AL. 

where we have chosen the [T] = [ti, qi] coupling scheme and C”“’ indicates the 
symmetrical summation of Eq. (1). For simplicity of notation we hereafter omit the 
component indices qa. In the occupation number notation of Eqs. (Bl ) and (B2), 
where s enumerates different shells, 

, WI 

where a ES indicate indices for which j, = j,. 
Owing to the antisymmetry of the state vectors $ E C, each set of values of the 

indices i, # i2 . . . # i, in D contribute equally to the matrix element (Ic/ IDI I,$). In 
particular, we can let the indices i, of each operator Z j:)(j,, js) run only on specific 
N, coordinates and multiply the matrix element by M = N!/n, N,!, the number of 
terms that were factored out. The same factor .N appears also in the following 
expression for $ in terms of antisymmetrical shell-states 1+5, of C, = j?: 

li>=(1//1/‘)1’2c(--1)$:n~,, (B7) 
P s 

where the sum runs over all the permutations p which do not involve equivalent 
electrons. It is then easily seen from Eq. (3) thai 

where 

DcNx’ = c fl Zi:) (j,, j,). s (B9) 
EES 

To complete the derivation we will show now that for single shell configurations: 

@lOI 

where the averages on the left- and right-hand sides of Eq. (BlO) is on the “shell 
conliguration” C, = j? and C, = j:, respectively. 

We first notice that for each Ic/, E C,, 

where #s is an n, electron SD of C,, and the sum is over all 4, that can be constructed 
from the orbitals of +,. When summing over $,, each 4, appears exactly 

U.312) 
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times. Thus 

(B13) 

From the Eqs. (Bll) and (B13) we obtain Eq. (BlO), leading to the desired 
relation (B3). 
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